ar X iv : m at h - ph / 0 20 70 10 v 2 2 3 Se p 20 02 Flux - Across - Surfaces Theorem for a Dirac Particle

نویسندگان

  • D. Dürr
  • P. Pickl
چکیده

We consider the asymptotic evolution of a relativistic spin-1 2 particle. i.e. a particle whose wavefunction satisfies the Dirac equation with external static potential. We prove that the probability for the particle crossing a (detector) surface converges to the probability , that the direction of the momentum of the particle lies within the solid angle defined by the (detector) surface, as the distance of the surface goes to infinity. This generalizes earlier non relativistic results, known as flux across surfaces theorems, to the relativistic regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 40 80 14 v 2 1 3 Ja n 20 06 The Flux - Across - Surfaces Theorem under conditions on the scattering state

The flux-across-surfaces theorem (FAST) describes the outgoing asymptotics of the quantum flux density of a scattering state. The FAST has been proven for potential scattering under conditions on the outgoing asymptote ψout (and of course under suitable conditions on the scattering potential). In this article we prove the FAST under conditions on the scattering state itself. In the proof we wil...

متن کامل

ar X iv : m at h - ph / 0 11 00 02 v 1 2 8 Se p 20 01 A STRONG OPERATOR TOPOLOGY ADIABATIC THEOREM

We prove an adiabatic theorem for the evolution of spectral data under a weak additive perturbation. For continuous functions of the unperturbed Hamiltonian the convergence is in norm while for a larger class functions, including the spectral projections associated to embedded eigenvalues, the convergence is in the strong operator topology.

متن کامل

ar X iv : m at h / 02 04 17 2 v 2 [ m at h . A G ] 1 8 Se p 20 02 ON THE EQUATIONS DEFINING

Based on Nakajima’s Classification Theorem [N] we describe the precise form of the binomial equations which determine toric locally complete intersection (“l.c.i”) singularities.

متن کامل

ar X iv : m at h - ph / 0 40 90 62 v 1 2 3 Se p 20 04 A remark on rational isochronous potentials

We consider the rational potentials of the one-dimensional mechanical systems, which have a family of periodic solutions with the same period (isochronous potentials). We prove that up to a shift and adding a constant all such potentials have the form U (x) = ω 2 x 2 or U (x) = 1 4 ω 2 x 2 + c 2 x −2 .

متن کامل

ar X iv : 0 80 3 . 43 83 v 2 [ m at h - ph ] 2 5 Se p 20 08 DISCRETE APPROXIMATION OF QUANTUM STOCHASTIC MODELS

We develop a general technique for proving convergence of repeated quantum interactions to the solution of a quantum stochastic differential equation. The wide applicability of the method is illustrated in a variety of examples. Our main theorem, which is based on the Trotter-Kato theorem, is not restricted to a specific noise model and does not require boundedness of the limit coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003